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Abstract

We consider a class of stochastic nonlinear programs for which an approximation to a locally optimal solution is specified in
terms of a fractional reduction of the initial cost error. We show that such an approximate solution can be found by approximately
solving a sequence of sample average approximations. The key issue in this approach is the determination of the required sequence
of sample average approximations as well as the number of iterations to be carried out on each sample average approximation
in this sequence. We show that one can express this requirement as an idealized optimization problem whose cost function is the
computing work required to obtain the required error reduction. The specification of this idealized optimization problem requires
the exact knowledge of a few problems and algorithm parameters. Since the exact values of these parameters are not known, we
use estimates, which can be updated as the computation progresses. We illustrate our approach using two numerical examples from
structural engineering design.
Published by Elsevier B.V.
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1. Introduction

In many practical decision making situations, uncertainty about future events as well as present status is significant
and must be accounted for in any optimization model of the system considered. One approach is to optimize the system
on the average, which may lead to a stochastic nonlinear programming problem in the following general form:

P : min
x∈X

g(x), (1)

where x ∈ X ⊂ Rn is a vector of continuous decision variables and

g(x) = EG(x, �). (2)

Here, E is the expectation corresponding to a probability space (�,F, P ), where � is a sample space, F is a �-algebra,
and P is a probability measure. Furthermore, G : Rn × � → R is a real-valued function, continuously differentiable
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with respect to its first argument for all � ∈ �. We assume that P is completely known. Furthermore, we assume that
for every x in a sufficiently large set, G(x, ·) is F-measurable and P-integrable, and hence g(x) is well defined. For a
broad, in-depth presentation of stochastic programming we refer to [14].

For simplicity, we assume that the feasible region is defined by

X = {x ∈ Rn|fj (x)�0, j ∈ J}, (3)

where fj : Rn → R, j ∈ J = {1, 2, . . . , J }, are deterministic, continuously differentiable constraint functions.
However, extensions to other feasible regions including those defined in terms of expectations are possible, e.g., by
using penalty functions.

Typically, the expectation EG(x, �) cannot be computed exactly because P is a continuous distribution or computa-
tions are impractical because P is a discrete distribution with a finite, but large number of possible realizations. For this
reason, Monte-Carlo sampling-based approaches have emerged. In the context of P, a Monte-Carlo approach replaces
g(x) by its sample average leading to the following sample average approximation:

PN : min
x∈X

gN(x), (4)

where

gN(x) =
N∑

j=1

G(x, �j )/N (5)

and �1, �2, . . . ,�N is a random sample. Given a sample, PN is a deterministic optimization problem, which can be
solved by various nonlinear programming algorithms.

Several asymptotic results are available for sample average approximations under weak assumptions including the
fact that minimizers and minimum values of the sequence of problems {PN }∞N=1 converge with probability one to
minimizers and the minimum value of P, respectively, see, e.g., [5,6,9,14,15]. Rate of convergence results can also
be found under additional assumptions, see [14, Section 6.2.2]. In view of these results, one approach for solving
P is to select a “sufficiently large” sample size, say N∗, generate a sample of size N∗, and solve PN∗ using an
appropriate optimization algorithm. The quality of the obtained solution can then be assessed using one of the tech-
niques found in, e.g., [14, Section 6.4], which may involve solving PN∗ multiple times for different independent
samples.

Even though rate of convergence results provide some guidance, it can be difficult to select an appropriate sam-
ple size which balances accuracy with computational tractability. This is further complicated if a “diagonalization”
scheme is used. In a diagonalization scheme, P is not (approximately) solved by solving one sample average ap-
proximation, but by solving it in stages, each stage consisting of performing a finite number of solver iterations on a
problem PNi

, i = 1, 2, . . . , s, where N1, N2, . . . , Ns is an increasing sequence of sample sizes, and s is the number
of stages. In this approach, the result of the last iteration at stage i is used as a warm-start for the calculations at the
next stage i + 1. Intuition and computational evidence suggest that a diagonalization scheme can reduce the overall
computing time since it uses coarse approximations, characterized by small sample sizes, when far from a local solu-
tion, and improves the quality of the approximation (i.e., increases the sample size), only as a local solution of P is
approached.

However, the problem of selecting appropriate sample sizes and deciding when to switch to the next stage is non-
trivial. Particularly, since these decisions are bound to have a serious impact on the total computing time. In [13],
using ideas found in semi-infinite optimization, we preselect the sizes {Ni} of the stages, i.e., problems {PNi

} to
be used, and present a closed-loop, feedback test for determining when to construct the next stage and to switch
to it. According to this test, when the algorithm being applied to PNi

starts to stall, making only very small cost-
reductions, it is time to switch to PNi+1 . In this test, the critical cost-reduction depends on the index i. Assuming
that the number of stages is allowed to be infinite, the test in [13] ensures that a sufficient number of solver itera-
tions are carried out at each stage to guarantee asymptotic convergence of the overall algorithm to a local solution
of P.

In this paper we do not consider the issue of asymptotic convergence, but rather the problem of obtaining an
approximate solution that is specified in terms of a fractional reduction in cost error from an initial cost error. The
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feedback test proposed in [13] is not useful for this task. Instead, we follow the process proposed in [4], which consists
of formulating an auxiliary optimization problem, whose cost function is the total work needed to obtain a solution of
required accuracy, and whose constraint is that the required cost reduction be achieved. The variables in this auxiliary
problem are (i) the number of stages, s, to be used, (ii) the sample size Ni to be used in stage i, i = 1, 2, . . . , s, and
(iii) the number of solver iterations ni to be used in stage i. While the number of stages s has to be treated as an integer
variable, the variables Ni and ni can be treated as continuous variables and rounded at the end of their optimization. In
practice, it turns out that the optimal number of stages s∗ hardly ever exceeds 10, with 3–7 being a most likely range
for s∗. Incidentally, if one assigns the number of stages to be s > s∗, and then solve the reduced auxiliary optimization
problem for the Ni and ni , the optimal solution will consist of several Ni being equal, so that the total number of
distinct stages is s∗.

The auxiliary problem depends on a sampling-error bound, on the initial cost error, and on the rate of convergence
of the solver. All of these may have to be estimated. As a result, it may be presumptuous to call the solution of the
auxiliary optimization problem an “optimal strategy,” and hence we will call it an “efficient strategy.” As we will see
from our numerical results, despite the use of estimated quantities, the efficient strategy is considerably more effective
than the obvious alternatives.

In Section 2, we derive the auxiliary optimization problem for determining the efficient diagonalization strategy.
Section 3 describes how parameters in the auxiliary problem can be estimated. The overall scheme is described in
Section 4. We present two numerical examples in Section 5.

2. Efficient diagonalization

We begin by deriving the auxiliary optimization problem. The auxiliary optimization problem is similar to the one
in [4], but the following derivation of the model as well as its implementation is somewhat simplified.

First we use exact penalization to convert P into an unconstrained min–max problem. For a given � > 0, we define

�(x) = g(x) + �‖f (x)+‖∞, (6)

and

�N(x) = gN(x) + �‖f (x)+‖∞, (7)

where ‖f (x)+‖∞ = max{0, f1(x), f2(x), ..., fJ (x)}. For a given penalty � > 0, let

P̃ : min
x∈Rn

�(x). (8)

If P is calm (see, e.g., [2,3]) and � is sufficiently large, then x ∈ Rn is a local minimizer of P̃ if and only if it is a local
minimizer of P. Similarly,

P̃N : min
x∈Rn

�N(x) (9)

is equivalent to PN for sufficiently large �. An appropriate � can be selected using well-known techniques such as the
one in [10, Section 2.7.3]. The implementation of exact penalty algorithms is beyond the scope of this paper and we
assume in the following that a sufficiently large � > 0 has been determined.

Throughout this paper, we assume that each sample point is independently generated from P and that sample points
are reused at later stages, i.e., for all i = 2, 3, . . . , s, the sample at stage i consists of the Ni−1 sample points at stage
i−1 and Ni −Ni−1 new, independent sample points. Suppose that a random sample �1, �2, . . . ,�Ns has been realized
and that gNi

(x) is computed using this sample for all x ∈ Rn and i =1, 2, . . . , s. Hence, we can argue deterministically
in the following paragraphs.

We denote the positive integers by N={1, 2, 3, . . .}. To construct an optimization model for determining the number
of stages as well as the sample size at each stage and number of solver (min–max algorithm) iterations to be performed at
each stage, we introduce the following assumptions. Suppose that the min–max algorithm applied to {P̃Ni

}si=1 is defined
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by a linearly convergent algorithm map A : Rn × C(Rn, R) → Rn to compute the sequences {xi
j }ni

j=0, i = 1, 2, . . . , s,

where ni ∈ N is the number of iterations at stage i, i.e., xi
j+1 =A(xi

j , �Ni
) for all j =0, 1, . . . , ni −1 and i=1, 2, . . . , s.

To make use of “warm” starts, we set xi
0 = xi−1

ni−1
. We assume that the rate of convergence of the algorithm map is the

same for the entire family {P̃Ni
}si=1, i.e., there exists a � ∈ (0, 1) such that for all x ∈ Rn and i = 1, 2, . . . , s

�Ni
(A(x, �Ni

)) − �∗
Ni

��(�Ni
(x) − �∗

Ni
), (10)

where �∗
Ni

is the optimal value for the problem P̃Ni
. Next, assume that for all N ∈ N, N �Ns and for all x in a

sufficiently large subset set of Rn containing {xi
j }ni

j=0, i = 1, 2, . . . , s and the optimal solutions of P̃ and P̃N , N �Ns ,
the sampling error is given by

|�N(x) − �(x)|��(N), (11)

where, � : N → (0, ∞) is a strictly decreasing function with �(N) → 0, as N → ∞. We return to the form of �(·)
below, but for now we only assume that such a function exists.

Let �∗ and x∗ ∈ Rn be the optimal value and an optimal solution of P̃, respectively. Also, let x∗
N ∈ Rn be an optimal

solution of P̃N , i.e., �∗
N = �N(x∗

N). Then, in view of (11) we have that

�∗ ��(x∗
N)��N(x∗

N) + �(N) = �∗
N + �(N), (12)

�∗
N ��N(x∗)��(x∗) + �(N) = �∗ + �(N) (13)

for all N �Ns .
For any stage i = 1, 2, . . . , s, we define the cost-to-go after the last iteration of the ith stage by

ei = �(xi
ni

) − �∗. (14)

Also let e0 = �(x1
0) − �∗. Using (11)–(13) and (10), we obtain that for all i = 1, 2, . . . , s,

ei ��Ni
(xi

ni
) − �∗

Ni
+ 2�(Ni) (15)

��ni [�Ni
(xi

0) − �∗
Ni

] + 2�(Ni) (16)

��ni [�(xi−1
ni−1

) − �∗] + 4�(Ni) (17)

��ni ei−1 + 4�(Ni). (18)

Hence,

es �e0�
k0(s) + 4

s∑
i=1

�ki (s)�(Ni), (19)

where ki(s) = ∑s
l=i+1nl if i < s and ki(s) = 0 if i = s. As the number of stages s increases to infinity, the first term

in (19) vanishes while the second expression consists of an increasing number of terms. However, as the following
theorem shows, the cost-to-go is guaranteed to vanish as the number of stages tends to infinity.

Theorem 2.1. Consider a sequence {Ni}∞i=1 of sample sizes, with Ni → ∞, as i → ∞, and sequences {xi
j }ni

j=0,
with ni ∈ N, i = 1, 2, . . . , s, generated by the algorithm map A : Rn × C(Rn, R) → Rn using the recursion
xi
j+1 =A(xi

j , �Ni
) for all j = 0, 1, . . . , ni − 1 and i = 1, 2, . . . , s, with xi

0 = xi−1
ni−1

, i = 2, 3, . . . , s, and x1
0 ∈ Rn given.
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Suppose that the following hold almost surely:

(i) There exists a � ∈ (0, 1) such that for all x ∈ Rn and i ∈ N, (10) holds.
(ii) There exists a strictly decreasing function � : N → (0, ∞) such that �(N) → 0, as N → ∞, and

|�Ni
(x) − �(x)|��(Ni), (20)

for all x ∈ Rn and i ∈ N.

Then, es → 0, as s → ∞, almost surely.

Proof. We first observe that any sequence {ai}∞i=0 constructed by the recursion ai = �ai−1 + b, with � ∈ (0, 1) and
b�0, converges to b/(1 − �), as i → ∞.

Since �(Ni) → 0, as i → ∞, there exists a strictly decreasing sequence {di}∞i=1 such that di → 0, as i → ∞, and
di �4�(Ni) for all i ∈ N.

We now construct the collection of sequences {ej
s }∞s=sj

, j ∈ N, in the following manner: Let s1 = 0, e1
s1

= es1 = e0,

and e1
s = �e1

s−1 + ds1+1 for all s�s1 + 1. Since e1
s → ds1+1/(1 − �), as s → ∞, there exists an integer s2 > s1 such

that e1
s �2ds1+1/(1 − �) for all s�s2. Hence, we have constructed s1, {e1

s }∞s=s1
, and s2.

In a similar manner, we construct {e2
s }∞s=s2

and s3: Let e2
s2

= e1
s2

and e2
s = �e2

s−1 + ds2+1 for all s�s2 + 1. There
exists an integer s3 > s2 such that e2

s �2ds2+1/(1 − �) for all s�s3. Hence, we have constructed {e2
s }∞s=s2

, and s3.

We obtain {ej
s }∞s=sj

, j = 3, 4, ..., by repeating this processes. Consequently,

e
j
s �

2dsj +1

1 − �
(21)

for all s�sj+1 and j ∈ N.
Since the number of iterations at each stage ni �1 for all i ∈ N, ���ni for all i ∈ N. Hence, it follows from (18)

and the construction of {ej
s }∞s=sj

, j ∈ N, that es �e
j
s for all s�sj and j ∈ N. This result, together with (21), gives that

es �
2dsj +1

1 − �
(22)

for all s�sj+1 and j ∈ N. Since dsj +1 → 0, as j → ∞, the conclusion follows. �

Assumption (ii) in Theorem 2.1 is satisfied under moderate assumptions using a uniform Law of the Iterated Logarithm
(see, e.g., [7, p. 217], and [13]). In this case, �(N)=√

(log log N)/N for sufficiently large N. We also note that {Ni}∞i=1
is not required to be strictly decreasing for the conclusion in Theorem 2.1 to hold.

Theorem 2.1 shows that diagonalization schemes can be constructed with asymptotic convergence. This is a valuable
result, but we aim to determine efficient diagonalization schemes, i.e., schemes that minimize the computing time to
reach a specific reduction in cost from an initial value.

To be able to construct efficient diagonalization schemes we need to quantify the computational effort associated
with one iteration of the algorithm map A(·, �N) as a function of the sample size N. Suppose that this computational
effort is given by w(N) for any x ∈ Rn, where w : N → (0, ∞) is some function. We are now ready to present the
efficient diagonalization problem.

Given an initial cost-to-go e0 > 0 and an 	 ∈ (0, 1), we seek to determine the number of stages s ∈ N as well as
sample sizes Ni ∈ N and numbers of iterations ni at each stage i, i = 1, 2, . . . , s, such that the computational effort to
reach a cost-to-go of 	e0 is minimized. In view of (19), this optimization problem takes the following form:

D(e0, 	) : min
s∈N

min
ni ,Ni

{
s∑

i=1

niw(Ni)

∣∣∣∣∣ e0�
k0(s) + 4

s∑
i=1

�ki (s)�(Ni)�	e0,

Ni+1 �Ni, i = 1, 2, . . . , s − 1, ni, Ni ∈ N, i = 1, 2, . . . , s

}
. (23)
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The estimation of the parameters defining problem D(e0, 	) is discussed in the next section. For lack of a better phrase,
we will refer to this process as the implementation of D(e0, 	).

3. Implementation of efficient diagonalization problem

The efficient diagonalization problem D(e0, 	) involves the work and sampling-error functions w(·) and �(·) as
well as the rate of convergence parameter � and the initial cost-to-go e0 = �(x1

0) − �∗. All these quantities must be
determined before D(e0, 	) can be solved. We deal with these issues one at a time.

In view of (5), the computing effort required to evaluate gN(·) and its gradient grows linearly in N. Hence, the work
associated with one iteration of the algorithm map A(·, �N) is proportional to N and the work function w(N) = N .

The sampling error �(N) can be determined using the Law of the Iterated Logarithm as indicated earlier. However,√
(log log N)/N is a pessimistic estimate of the sampling error “typically” experienced. Since our goal is to determine

efficient number of stages, sample sizes, and numbers of iterations, it appears to be more reasonable to assume that
the sampling error is proportional to 1/

√
N as proposed by classical estimation theory: For a given x ∈ Rn, it follows

under weak assumption from the Central Limit Theorem that �N(x) is approximately normally distributed with mean
�(x) and variance �(x)2/N for large N, where �(x)2 = V ar[G(x, �)]. Hence, for sufficiently large N,

P [|�N(x) − �(x)|��(N)]�0.95, (24)

when �(N) = 1.96�(x)/
√

N . This error expression appears to be more appropriate, and we set �(N) = 1.96 supx∈Rn

�(x)/
√

N in the following. Usually, supx∈Rn �(x) is unknown and must be estimated. The same is true for � and e0.
We determine �(x), �, and e0 in an estimation phase consisting of n0 iterations of the algorithm map A(·, �N0

)

applied to PN0 , with N0 being a small sample size. Let {x0
j }n0

j=0 be the iterates computed in the estimation phase. Each

time gN0(x) is computed, the corresponding variance �(x)2 is estimated by its unbiased estimator

�̂(x)2 =
N0∑
j=1

(G(x, �j ) − gN(x))2/(N0 − 1). (25)

Hence, we approximate supx∈Rn �(x) by �̂ = maxj=0,1,...,n0 �̂(x0
j ).

The rate of convergence parameter � is estimated by the solution of the following least-squares problem, where the
optimal value �∗

N0
of P̃N0 is also estimated:

min
�̂,�̂

n0∑
j=0

[(�̂ + (�N0
(x0

0 ) − �̂)�̂
j
) − �N0

(x0
j )]2. (26)

Then, we estimate � by �̂ and �∗
N0

by �̂. Finally, we estimate the initial cost-to-go e0 =�(x1
0)−�∗ by ê0 =�N0

(x0
0 )− �̂.

We have now established procedures for estimating all the unknown quantities in D(e0, 	). D(e0, 	) is a nonlinear
integer program that appears difficult to solve directly, but this fact can be circumvented by the following observations.

First, the restriction of D(e0, 	) obtained by fixing s ∈ N to a number in the range 5–10 tends to be insignificant
since more than 5–10 stages is rarely advantageous and fewer than 5–10 stages is still effectively allowed in the model
by setting Ni = Ni+1 for some i. Second, Ni , and to some extent also ni , tend to be large integers. Hence, a continuous
relaxation with rounding of the optimal solutions to the nearest integers is justified. In view of these observations,
D(e0, 	) can be solved approximately using a standard nonlinear programming algorithm.

4. Overall algorithm

We now summarize our approach and discuss how the efficient diagonalization problem can be integrated in an
algorithm for solving P. As indicated above, the process of solving the efficient diagonalization problem must be
preceded by an estimate phase where parameters are determined. This leads to the following overall algorithm for
solving P approximately.
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Algorithm for solving P approximately.
Parameters. Number of iterations in estimation phase n0 ∈ N, sample size in estimation phase N0 ∈ N, maximum

number of stages s, and constraint penalty � > 0.
Data. Required fractional reduction in cost 	 > 0, initial point x0

0 ∈ Rn, and a set {�1, �2, . . .} of independent sample
points from P.

Step 0. Compute variance estimate �̂(x0
0 )2 using (25).

Step 1. For j = 0 to n0 − 1, compute x0
j+1 = A(x0

j , �N0
) and the variance estimate �̂(x0

j+1)
2 using (25).

Step 2. Compute the global estimate �̂ = maxj=0,1,...,n0 �̂(x0
j ).

Step 3. Determine �̂ and �̂ as the optimal solution of (26).
Step 4. Set �̂(N) = 1.96�̂/

√
N , and determine ni and Ni by solving

min
ni ,Ni

{
s∑

i=1

niNi

∣∣∣∣∣ ê0�̂
k0(s) + 4

s∑
i=1

�̂
ki (s)

�̂(Ni)�	ê0, Ni+1 �Ni, i = 1, 2, . . . , s − 1, ni,

Ni �1, i = 1, 2, . . . , s

}
. (27)

Step 5. For i = 1 to s, perform
Sub-step 5.1. Set xi

0 = xi−1
ni−1

.

Sub-step 5.2. For j = 0 to ni − 1, compute xi
j+1 = A(xi

j , �Ni
).

The proposed algorithm consists of three phases: estimation of parameters (Steps 0–3), solution of efficient diag-
onalization problem (Step 4), and main iterations (Step 5). This represents the simplest implementation of our idea.
Alternatively, we can adopt a moving-horizon approach, where Step 5 is completed only for i = 1, followed by Step
4, then by Step 5 for i = 1 again, followed by Step 4, etc. Hence, the diagonalization plan is re-optimized after each
stage, which may lead to an improved plan. With re-optimization, it is also possible to re-compute �̂, using all previous
iterates, as well as �̂ and �̂. Other implementations can also be imagined. In the following numerical study, we adopt
the simple implementation described above.

5. Numerical study

We illustrate our approach using two numerical examples, both of which arise in structural engineering design. The
examples are implemented in Matlab 7.0 [8] on a 2.8 GHz PC running Microsoft Windows 2000. We use one iteration
of the Pshenichnyi–Pironneau–Polak Min–Max Algorithm (see [10, Section 2.4.1]) as the algorithm map A(·, ·).

The first example arises in optimal design of a short structural column with a rectangular cross section of dimensions
x1 ×x2. Hence, x =(x1, x2) ∈ R2 is the design vector. The column is subjected to bi-axial bending moments V1 and V2,
which, together with the yield strength V3 of the material, are considered to be independent, lognormally distributed
random variables. The column is also subject to a deterministic axial force af . This gives rise to a failure probability

p(x) = PV [{h(x, V )�0}], (28)

where PV is the probability distribution of the random vector V = (V1, V2, V3) and h : R2 × R3 → R is a limit-state
function defined by

h(x, V ) = 1 − 4V1

x1x
2
2V3

− 4V2

x2
1x2V3

−
(

af

x1x2V3

)2

. (29)

Now, let � = {� ∈ R3|‖�‖ = 1} and P be the uniform distribution on the three-dimensional hypersphere. In [13], we
show that under fairly general assumptions the failure probability can be approximated by the expression

pa(x) = E[G(x, �)], (30)
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to arbitrarily high accuracy for large values of the parameter a > 0 (a = 6.5 suffices in this example), where

G(x, �) = max{1 − 
2(r2(x, �)), 1 − 
2(a2)}, (31)


2(·) is the Chi-square cumulative distribution function with 3 degrees of freedom,

r(x, �) =
{

min
r

{r|h̃(x, r�)�0, r �0} if {r|h̃(x, r�)�0, r �0} 	= ∅,

∞ otherwise,
(32)

and h̃(·, ·) is a standardized version of h(·, ·). We note that estimation of (30) tends to require fewer samples than
estimation of (28) in the case of small probabilities. This is the case since (28) is estimated by an average of zeros and
ones. However, in general the advantage for (30) diminishes as the dimension of the sample space � increases.

We seek a design of the column which satisfies the constraints defined by f1(x)=−x1, f2(x)=−x2, f3(x)=x1/x2−2,
f4(x) = 0.5 − x1/x2, f5(x) = x1x2 − 0.175, and minimize pa(x). Hence, the problem is in the form of P, but with
the integrand G(·, �) nonsmooth. Under weak additional assumptions, it follows from [13] that pa(x) is continuously
differentiable. Hence, for moderately large N, the sample average

∑N
j=1G(x, �j )/N of pa(x) is, for practical purposes,

effectively smooth. For this reason, we ignore the nonsmoothness of the sample average function in this, as well as
the next example. No detrimental behavior of the Pshenichnyi–Pironneau–Polak Min–Max Algorithm was observed
because of this simplification. Alternatively, we could have applied the entropy technique from [11] to smooth the
sample average, but we opted for the simpler approach, which equally well illustrates our efficient diagonalization
strategy.

The algorithm parameters were selected to be n0 = 25, N0 = 50, s = 5, and � = 2. We note that � = 2 suffices to
ensure feasibility in P. Finally, the required fractional reduction in cost was 	 = 0.01 and the initial point was chosen
to be x0

0 = (
√

0.175,
√

0.175).
Our proposed algorithm yielded a diagonalization strategy of three stages with 25, 8, and 8 iterations, with sample

sizes 50, 251, and 1621, respectively, which was executed in 458 s. Note that the computing time includes the estimation
phase (30 s) and the solution time of the efficient diagonalization problem (3 s).

For comparison, we also adapted the algorithm in [13] for solving P̃. The adapted version of the algorithm in [13]
consists of repeated application of the Pshenichnyi–Pironneau–Polak Min–Max algorithm map to P̃Ni

until a closed-
loop, feedback test determines a switch of stages. We refer to this algorithm as Algorithm RP . Specifically, Algorithm
RP switches stages at iteration xj if the proposed new point z satisfies

�Ni
(z) − �Ni

(xj ) > − ��(Ni)
�, (33)

i.e., z gives too small a cost reduction. Here, � > 0 and � ∈ (0, 1) are algorithm parameters. The parameter � is typically
set close to one (0.9999 in these numerical examples), while a favorable value of � is difficult to determine. Furthermore,
the sample size at each stage must be determined a priori. In this example, we selected five stages with sample sizes
equally spaced between the minimum and maximum sample sizes given by the efficient diagonalization strategy, i.e.,
50, 443, 836, 1228, and 1621. We used the same random seed in both algorithms. We ran Algorithm RP until �1621(·)
was equal to the cost achieved in the last iteration of the algorithm with efficient diagonalization. We did not augment
the sample size beyond 1621, but continued computing iterates at that stage until the target cost-value was achieved.
This is a somewhat favorable stopping criteria for Algorithm RP because this algorithm might augment, prematurely,
the sample size beyond 1621 resulting in long computing times. It can be deduced from [13] that Algorithm RP

converges almost surely if �(N) = √
(log log N)/N . Hence, we adopted this error function. The computing times for

Algorithm RP are summarized in column two of Table 1 for various values of the parameter � in (33). Note that the
magnitude of �N(x) is between 10−2 and 10−3 for feasible x and hence one would expect suitable values of ��(N)�

being somewhat less. In Table 1, the row with � = ∞ gives the computing time for a fixed sample size equal to the
largest sample size 1621 for all iterations.

We also attempted using the error function �(N) = 1/
√

N , which changed the results only marginally as seen in
the third column of Table 1. We observe from (33) that a small value of � forces Algorithm RP to solve the current
approximating problem accurately before switching to a larger sample size. As seen from Table 1, there is a trade-off
between solving the approximating problem accurately at an early stage, potentially wasting time, and solving the early
approximations too coarsely, leading to many iteration at stages with high computational cost. If the right balance is
found, i.e., a good �, then the feedback rule (33) can be efficient. Of course, it is difficult to select � a priori. To illustrate
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Table 1
Computing times [seconds] for Algorithm RP [13] applied to Example 1

� �(N)√
(log log N)/N 1/

√
N

∞ 980 980
10−1 1044 1036
10−2 1084 654
10−3 678 675
10−4 675 677
10−5 682 676
10−6 476 477
10−7 574 554
10−8 603 601
10−9 898 901

The efficient diagonalization approach computes the same result in 458 s.

this difficulty, we repeated the example for the higher accuracy 	 = 0.005. Then, the efficient diagonalization approach
increased the sample size up to 6473 and solved the problem in 1461 s. From Table 1 it appears that �= 10−6 is a good
choice. We selected this value and re-solved the problem using Algorithm RP with five stages equally spaced in the
range [50, 6473] as above. The computing time turned out to be 4729 s. Hence, � = 10−6 was not efficient in this case.

The second example is a design of a simply supported reinforced concrete T-girder for minimum cost according to
the specifications in [1], using the design variables x = (As, b, hf , bw, hw, Av, S1, S2, S3) ∈ R9, where As is the area
of the tension steel reinforcement, b is the width of the flange, hf is the thickness of the flange, bw is the width of the
web, hw is the height of the web, Av is the area of the shear reinforcement (twice the cross-section area of a stirrup),
and S1, S2 and S3 are the spacings of shear reinforcements in the high, medium, and low shear force zone of the girder,
respectively.

We modeled uncertainty using eight independent, random variables collected in a vector V . We assumed that the
girder can fail in four different modes corresponding to bending stress in mid-span and shear stress in the high, medium,
and low shear force zone. Structural failure occurs if any of the four failure modes occur. This gives rise to four nonlinear,
smooth limit-state functions hk(x, V ), k = 1, 2, 3, 4, whose exact form is rather complicated and given in [12]. This
results in a failure probability p(x) = PV [∪4

k=1{hk(x, V )�0}].
Now, let � = {� ∈ R8|‖�‖ = 1} and P be the uniform distribution on the eight-dimensional hypersphere. Then,

similarly to what was done above, the failure probability can be approximated by (30), with

G(x, �) = max

{
max

k=1,...,4
{1 − 
2(r2

k (x, �))}, 1 − 
2(a2)

}
, (34)


2(·) being the Chi-square cumulative distribution function with 8 degrees of freedom,

rk(x, �) =
{

min
r

{r|h̃k(x, r�)�0, r �0} if {r|h̃k(x, r�)�0, r �0} 	= ∅,

∞ otherwise,
(35)

and h̃k(·, ·) being standardized versions of hk(·, ·). We set the approximation parameter a = 10 in this case. We also
imposed 24 deterministic, nonlinear constraints as described in [12].

Algorithm parameters were selected to be n0 =50, N0 =50, s=5, and �=1. Finally, the required fractional reduction
in cost 	 = 0.0001 and the initial point x0

0 = (0.01, 0.5, 0.5, 0.5, 0.5, 0.0005, 0.5, 0.5, 0.5) were chosen.
Our proposed algorithm yielded a diagonalization strategy of three stages with 65, 20, and 20 iterations, with sample

sizes 50, 373, and 2545, respectively. The total computing time was 1001 s.
Again we compared this result with that obtained using Algorithm RP with five stages of equally spaced sample

sizes between 50 and 2545. Using the same stopping criterion as for the first example, we obtained the computing times
in Table 2.We observe that the computing times using Algorithm RP can be significantly longer than those achieved
using the efficient diagonalization approach.
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Table 2
Computing times [seconds] for Algorithm RP [13] applied to Example 2

� �(N)√
(log log N)/N 1/

√
N

∞ >36,000 >36,000
10−2 >12,600 7416
10−3 2004 1990
10−4 2256 2342
10−5 6721 2327
10−6 1209 1608
10−7 11,108 >7200

The efficient diagonalization approach computes the same result in 1001 seconds.

6. Conclusions

We have demonstrated that solving an auxiliary, efficient diagonalization problem to obtain a diagonalization strategy
can reduce the overall computing times in stochastic nonlinear programming. In particular, this approach eliminates
the need for determining algorithm parameters by means of guesswork or costly numerical experimentation. Instead,
the efficient diagonalization problem determines sample sizes and numbers of iterations at each stage using estimated
values of cost-to-go, rate of convergence, and sampling error. Even using Matlab, the solution of the diagonalization
problem requires only seconds of computing time. Our computational experience indicates that the advantage of an
efficient diagonalization approach is more substantial for larger, more complicated problems and when a high-precision
solution is sought.
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